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A two-step iterattve block Lanczos algorrthm for determining a dominant span of eigenvec- 
tom. which under certain conditrons may be alternative to the full Lanczos algorithm and the 
block Lanczos algorithm, is presented. The present method is an extension of the 2 x 2 
Lanczos method for iteratively determining a dominant ergenvector and exhibits better 
convergence properties than the simple power method. The properties of the method are 
discussed and a numerical example is presented. lr.1 19x7 Academic PWS IK 

Iterative methods for determining dominant (or extremal) eigenstates of a sym- 
metric (or Hermitian) matrix are, in some cases, a viable alternative to the full 
Lanczos algorithm [l-l I 1, particularly if a full reorthogonalization [ 10, 121 or a 
selective orthogonalization [13, 151 of the Lanczos vectors is deemed necessary. 
The 2 x 2 Lanczos algorithm [ 121, for example, represents a simple convergent 
means of obtaining the dominant eigenstate of a Hermitian matrix, A, which avoids 
the aforementioned problems by confining all iterations to a two-dimensional 
Krylov subspace [ 151 K(*) spanned by the linearly independent, but non- 
orthogonal vectors in) and 2 In). Choice of In) as the eigenstate, with the smallest 
(largest) eigenvalue obtained from the Rayleigh-Ritz (RR) procedure applied to the 
projection of A onto Kk*! 1, yields an algorithm that ultimately will converge to the 
exact eigenstate of A with the smallest (largest) eigenvalue, provided that this 
eigenstate is present in the original start vector / 1). In practice, the effect of roun- 
doff errors always ensures that some component of the dominant eigenstate enters 
the iterated vectors even if it is absent from the start vector. The 2x 2 Lanczos 
algorithm combines the programming simplicity of subspace iteration methods with 
the better convergence properties of the Lanczos algorithm. 
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Since only two vectors are involved in each iteration step, less computer storage 
is required and no numerical problems should arise from the orthogonalization of 
the two vectors in KC’) required by the RR procedure. The 2 x 2 Lanczos algorithm, 
although convergent, converges at a rate slower than the full Lanczos algorithm, 
but faster than the power method and, as previously indicated, yields only one 
eigenvector. 

It is not always clear which of the variations on the Lanczos algorithm is best 
suited to a particular eigenproblem and computer environment. We show the 
usefulness of a two-step iterative block Lanczos variant for determining the 
dominant eigenspan of a symmetric matrix, particularly when computer memory is 
limited. This algorithm is a simple extension of the 2 x 2 Lanczos algorithm. The 
idea is as follows: 

FIG. l-5. The convergence rate of the live lowest-lying eigenvalues in a random 100 x 100 symmetric 
matrix for: L = Lanczos method; M = present method; PO = power method without acceleration; 
PS = power method with RR acceleration. The five startvectors have all been chosen as 10m6 x (sum of 
first ten exact eigenvectors) + 0.1 x (sum of next seven exact eigenvectors) before normalization. 
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From the span of vectors Q$)= (InI), \nz) ... in,)) construct the span of vec- 
tors AQl;l’= (A In,), A In,) ...A In,)). Orthogonalize the 2N vectors containe 
in Qg) + AQ$$!) and diagonalize A in this subspace, (that is, perform a RR step in 
the subspace Q$) +AQIy”)). Choose the N eigenvectors with the smallest (largest) 
eigenvalues as the span Qc + l). Such iterations will yield the dominant span of the 
exact eigenvector of A, that is, those with the smallest (largest) eigenvalues, 
provided, of course, that these eigenvectors are present in the initial span of vectors. 
As before, roundoff effects ensure that this proviso is satisfied in practice. 

The present algorithm is a sub-algorithm of an algorithm originally proposed by 
Karush [ 161 and which was later extended to become the block Lanczos algorithm 
[17-201. Here, as in the present algorithm, one chooses a set of n mutually 
orthogonal vectors which are taken to be columns of a matrix QI. Associated with 
Q, is a big Krylov subspace 
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Reorthogonalizing sequentially the vectors in each member of the span with the 
vectors contained in the preceding elements of the span yields an orthonormal basis 

In this basis, the projection of A is a block tridiagonal matrix. 
In the block Lanczos as in the present algorithm, multiple eigenvalues with mul- 

tiplicities up to the block size can be computed. However, in the block Lanczos 
algorithm the lirst n eigenpairs which converge need not necessarily be the eigen- 
pairs with the largest (or smallest) eigenvalues. In general the II eigenpairs which 
converge the fastest are a mixture of the eigenvectors with highest and lowest eigen- 
values. This may lead to some problems in choosing the block size. This problem is 
avoided in the present algorithm. 

The present algorithm is related to the simple power method for obtaining the 
dominant span of eigenvectors [ 151. The matrix A must possess either a positive or 
a negative definite spectrum. This presents no problem, since the spectrum may be 

l- 
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shifted to ensure that either of these conditions is fulfilled. The present algorithm 
improves the convergence rate of the power method. 

It is well known that the convergence of the power method can, in principle, be 
improved by allowing for a spectral shift of the matrix A during the iterations. The 
iterated span of N vectors may be given by 

k+l 

Q 
-$+l)+Jk+l n (A-/l,)~~)=Nk+l(A-/lk+l)~!~), 

n=l 

where A is a diagonal matrix containing the spectral shifts, N is an orthonor- 
malization matrix, and the vectors in Q.,, have been orthonormalized. To o 
dominant span of eigenvectors, one may determine the spectral shifts in an optima! 
manner by requiring that the trace of the matrix 

a(k+‘)=(~~))‘(A--/Ik,+l)(Nk+l)+ANk+l(~4-/i~+l~)~~l (2) 
N 

be an extremum. This implies that the trace of the eigenvalues of the matrix A pro- 
jected onto the subspace spanned by the vectors in &g”’ must be an extremum. 

FIGURE 4 
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Furthermore, the span of vectors in &$+‘) may always be expressed in the follow- 
ing manner 

where 

gjyk+ 1) = CQ$) + (A _ Qp) &$I, (3) 

sZ”N = (Q$‘)’ AQ$$’ (4) 

and C is a suitably constructed matrix of constants. Since the trace of the eigen- 
values of the dominant N-dimensional span of the eigenvectors obtained from the 
diagonalization of A projected onto the subspace spanned by the 2N vector con- 
tained in Q$) and (A - Q”,) @.$) is an extremum, choosing this set of eigenvectors 
for Q$+ r) corresponds to making an optimal choice for the corresponding set of 
spectral shifts. Therefore, the requirement that spectral shifts be determined in an 
optimal manner in each iteration step is satisfied in the present algorithm and, 
hence, the convergence rate of the dominant span of vectors will be improved. 

FIGURE 5 
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To illustrate the convergence of the present method as compared with other 
methods, the following calculations were performed. A 1;DO x 100 symmetric random 
matrix was generated and shifted by an amount somewhat greater than the largest 
eigenvalue of the matrix. This ensures that the matrix has a negative definBte 
spectrum. 

A dominant span of eigenvectors, containing the First five eigenvectors with the 
smallest eigenvalues, has been calculated for various choices of the initial span of 
start vectors by use of the present method, the power method, and, for comparison. 
the full Lanczos algorithm. For the various cases, the start vector for the Lanczos 
algorithm has been taken to be the first vector in the initial span. 

Numerical results are presented in Figs. l-7. As might be expected [ 121 the con- 
vergence rate of the present method is faster than that of the power method but, in 
most cases, slower than the Lanczos method for each member of the span (see 
Figs. l-5). This is independent of the choice of the initial span of start vectors, as 

FIG. 6. The lowest lying eigenvalue of the first five eigenvalues that have been calculated m the same 
matrix by using a second span of start vectors, namely, 0.1 x (ith eigenvector) + 10eb x (sum of other 
16 out of first 17) eigenvectors for the ith start vector. i= l,..., 5 before normalization. L, M, PO, and PS 
as in Figs. 1-5. 
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may be seen in Figs. 1, 6, and 7 in which the convergent rate of the smallest eigen- 
value for different choices of the initial span of vectors is given. The question of 
block size is relevant. We have chosen a block size equal to the size of the span 
being sought. 

In the numerical calculations using the power method, the reorthogonalization of 
the vectors in the span in each iteration step is accomplished by a diagonalization 
of the corresponding norm matrix. This method of reorthogonalization yields a 
somewhat better convergence rate for all vectors in the span than the 
Gram-Schmidt (GS) method. 

A slight improvement in the convergence rate of the power method has also been 
obtained by performing an RR diagonalization of A in the subspace of the span of 
vectors in every 5th iteration step and by using the eigenvectors obtained in the 
next iteration step of the power method (see Figs. l-7). Implementation of an RR 
diagonalization in every iteration step, however, is computationally costly and need 
not necessarily accelerate the rate of convergence [15]. 

I I 

----M 

--L 
PO 

- PS 

FIG. 7. The lowest lying eigenvalue for a third span of start vectors, namely. 0.1 x (sum of first ten 
exact eigenvectors) + 10m6 x (sum of next seven exact eigenvectors) before normalization. L, M, PO, 
and PS as in Fig. 5. 
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To make it clear that the convergence of all the methods depends very strongly 
on the choice of the span of start vectors, we present in Table I the approximate 
values of the dominant eigenvalue after twenty iterations. The Lanczos method is 
the least sensitive to the initial choice of the start vector. 

The amount of computational work in the present algorithm is only slightly more 
than that in the power method. An additional 2N x 2N diagonahzation is required 
to determine the start span of N vectors for the next iteration step. However, the 
present method is superior to the simple power method because it corresponds to 
the power method with a spectral shift in which the spectral shifts are determined 
optimally in each iteration step. Bear in mind that each iteration step in the present 
method as well as the power method is computationally more expensive than an 
iteration step of the Lanczos vectors, since in each iteration step the matrix A must 
be multiplied by each member of the span. 

Although the present method yields the dominant span of eigenvectors with a 
convergence rate faster than that of the power method, its convergence rate is 
generally somewhat slower than that of the full Lanczos algorithm. Two steps of the 
present algorithm require four operations of the form “operator times a block” 
while three steps of the block Lanczos algorithm require three operations of this 
form. The three-step block Lanczos algorithm obtains an approximation from a 
3p-dimensional Krylov subspace while this algorithm obtains its approximation 
from a 2p-dimensional restricted subspace of the same 3p-dimensional Krylov 
space. Hence if space permits a multi-step algorithm is preferable. 

In spite of the fact that the full Lanczos algorithm or the block Lanczos 
algorithm may be used to obtain a dominant span of eigenvectors, there are cir- 

TABLE I 

The Approximate Value of the Dominant Eigenvalue after Twenty Iterations 

Dominant elgenvalue = -660.0569 

a 0 c 

Lanczos -660.0569 -660.0569 -660.0480 

Present method -660.0359 -655.4142 -657.7190 

Power with diagonalization -660.0352 -646.5317 -644.1444 
of norm matrix and 
RR every fifth step 

Power with GS and RR -660.0352 -646.5317 -643.6314 
every fifth step 

Power with diagonalization of -660.0323 -645.8453 -643.9544 
norm matrix, no RR 

Power with GS; no RR -659.9911 -645.8429 -585.9765 

Note. The span of start vectors for column a is the same as in Fig. 6; those for column b as m Fig. 7; 
and those for column c as in Fig. l-5. 
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cumstances in which the use of the present method is warranted and may even be 
advantageous. In particular, if limited storage is available and fast store can only 
accomodate a few of the Lanczos vectors, reorthogonalization or selective 
reorthogonalization of the Lanczos vectors becomes a prohibitive task. In this case 
the use of the present iteration method is really a viable alternative. Second, if the 
dominant span of eigenvectors has evenly spaced eigenvalues which are well 
separated from those of the undesired eigenvectors, the convergence rate of the 
present method as well as the power method will be very fast. In this case the 
advantages of the Lanczos algorithm will not be needed. Last, relaxation techniques 
[20] used to accelerate the convergence rate of the 2 x 2 Lanczos algorithm may 
also be generalized and should lead to improvements in the convergence rate of the 
present method. 
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